Applications of Semi-Additive Process Technology to PCB Design and Production

Authors:
Paul A. Dennig, Ph.D. and Mike Vinson
Averatek Corporation
Santa Clara, California
THREE QUESTIONS

1. Are there benefits to shrinking circuits on Printed Circuit Boards?

2. Can you give an example?

3. What are the effects?
THREE QUESTIONS

1. Are there benefits to shrinking circuits on Printed Circuit Boards?

2. Can you give an example?

3. What are the effects?
Shrinking Circuits: Where Do We Start?

- What challenges face every layout specialist?
 - Ball Grid Arrays (BGA), routing traces outside of BGA, joining both, etc.

- Which process to use?: Semi-Additive Process (SAP) vs. Subtractive Etch (SE) Process

- General design: look at # of signal lines passing between BGA pads
 - None
 - One
 - Two…
 - Many

- Specific case: circuit layout example

- Look at some electrical effects of shrinking circuits
Benefits of using SAP Technology in PCB Designs

LOOK FOR THESE ON NEXT SLIDES:

▪ Increase # of traces through BGA

▪ Reduce # of:
 – layers in PCB
 – laminations
 – microvias

▪ Combined, these promote:
 – decreased board size
 – higher reliability
 – lower costs
 – smaller environmental footprint
Q. How many Lines can fit between two BGA Pads?

A. It depends on the Line width. First, define:

- p = distance between pad centerlines (pitch)
- d = diameter of pads
- w = width of metal line(s)
- s = width of space(s) between adjacent metal
- $m = $ the number of possible equal spaces
- $n = $ the number of possible equal lines

Assume:

1. All pads are for signals (worst case for routing)
2. Line width = space between lines
Calculating the number of Lines, n

- \(m = n + 1 \) [Eq. 1]
- \(p = \frac{d}{2} + (m \times s) + (n \times w) + \frac{d}{2} \) [Eq. 2]
- \(n = \text{Int}[\left(\frac{p - d - s}{w + s}\right)] \) [Eq. 3]

Table of “n” for Different Minimum Feature Sizes

<table>
<thead>
<tr>
<th>Ball Pitch</th>
<th>Line & Space (minimum feature size, s and w)</th>
<th>Routing Layers Required</th>
<th># of Lines (between pads, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>75 µm</td>
<td>12*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50µm</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>35µm</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>28µm</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>19µm</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10µm</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes:
1) * = starting assumption
2) \(\therefore [R.L.R. * (# Lines)] = \) constant; 12 in this example
3) white rows – see next pages
BGA Land Pattern, 50x50 BGA Grid, 100 μm-Line Pitch

<table>
<thead>
<tr>
<th>Ball Pitch</th>
<th>Trace & Space (minimum feature size, s and w)</th>
<th>Routing Layers Required</th>
<th># of Traces (between pads, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>75 μm</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50μm</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>35μm</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>28μm</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>19μm</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10μm</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>
BGA Land Pattern, 50x50 BGA Grid, 38 µm-Line Pitch

<table>
<thead>
<tr>
<th>Ball Pitch</th>
<th>Trace & Space (minimum feature size, s and w)</th>
<th>Routing Layers Required</th>
<th># of Traces (between pads, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>75 µm</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50 µm</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>35 µm</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>28 µm</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>19 µm</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10 µm</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>
Routing More Lines Between Pads

By decreasing linewidths:

- Can route more traces through a BGA
- This reduces the # of routing layers
- Compare SAP and SE for # of lines between pads
 - SE upper limit is about 1 trace
 - SAP upper limit: photolithography limited
Benefits of using SAP Technology in PCB Designs

- Increase # of traces through BGA
- Reduce # of:
 - layers in PCB
 - laminations
 - microvias
- Combined, these promote:
 - decreased board size
 - higher reliability
 - lower costs
 - smaller environmental footprint
- Can design with much:
 - shorter line lengths
 - thinner dielectrics
 - thicker dielectrics (& use tightly-coupled differential conductor pairs)
- Could combine low-density SE layers with high-density SAP layers in one board design
THREE QUESTIONS

1. Are there benefits to shrinking circuits on Printed Circuit Boards?

2. Can you give an example?

3. What are the effects?
Specific Circuit Application Example: DDR4 S

- DDR4 SODIMM reference design (above)
- Multi-layer CAD drawings (at left)
 - Upper drawing: original reference design, 75 um lines and spaces for SE Process
 - Lower drawing: re-design, using SAP design guidelines, 35 um line & 52.5 um space

(Courtesy, T. Chester, Ref. [3] & Altium)

Notes:
(1) SODIMM (or SO-DIMM): Small Outline Dual In-Line Memory Module
(2) DDR4: Double Data Rate 4
(3) e.g., https://resources.altium.com/p/fly-topology-routing-ddr3-and-ddr4-memory
Specific Example: DDR4 SODIMM (cont’d.)

- Same circuit
- Focus: Signal Layer around BGA land pattern, single metal layer views

- *Upper drawing*: original design 75 um lines and spaces for SE. One or two lines fit.

- *Lower drawing*: SAP version of the same circuit. Up to four lines run between pads.

(Courtesy, T. Chester, Ref. [3] & Altium)
THREE QUESTIONS

1. Are there benefits to shrinking circuits on Printed Circuit Boards?

2. Can you give an example?

3. What are the effects?
Considerations

- Look at joining finer lines at the BGA to wider lines outside.

- Board designs typically use a Characteristic Impedance of $Z_0 = 50$ Ohm for signal lines.

- However, when signals meet mismatched impedances, reflections result & can distort the signal.

- Signal Integrity (SI): potential signal distortion = f(impedance, line length, slew rate, etc.)

Refs. [5 – 7]
Impedance Variation

- Q1. Why \(Z_0 = 50\) Ohms?
 A1. This is a practical but arbitrarily-chosen standard value. Often, Integrated Circuit I/O’s are designed to it.

- Q2. Where does \(Z_0 \neq 50\) Ohms?
 A2. Generally, where a metal line cross-section changes*

- Q3. Why?
 A3. By (i) design or (ii) through manufacturing process variation

- Q4. When does it matter?
 A4. When good Signal Integrity (SI) becomes critical

- Q5. How much?
 A5. Today, +/- 10% \(Z_0\) tolerance is accepted. Too often, it can’t be achieved. Moreover, we see this spec tightening into the future.

Note: * – other factors also apply. See, e.g. Refs. [5 – 6]
Two Sources of Impedance Variations due to Widths

- **Manufacturing Process Variations** in width
 - From process variation: across a panel, within a batch, batch-to-batch, etc.
 - Impedance (Z_0) change: $Z_0 \uparrow$ as line width \downarrow (see next slide)
 - Possible Signal Integrity (SI) degradation if I.C.’s Z_0 not matched to line’s Z_0
 - However, there is less process variation with SAP compared to SE

- **Intentional Design Changes** in width
 - Uneven-size metal lines joined by design (e.g. route lines away from BGA)
 - Signal reflections may occur any time there is impedance mismatch
 - Reflection magnitude depends on many factors
 - Q. Are the reflections significant?
 - A. Must do SI analysis (line length, signal slew rate, etc.)
Impedance Changes from Process Variations

- **Microstrip transmission line**
- **Assume:**
 - one 10 mil-wide trace (250 um)
 - 5 mil-thick dielectric
 - Dk = 4.0
 - ground plane beneath
- **Variations:**
 Processing Width
- Calculate the impedance, Z_0, as line width changes

[7]
Effects of Line Width Changes (cont’d.)

- Tighter manufacturing tolerance on linewidth with SAP gives tighter Z_0 than with SE

- Intentional width changes by design, such as during PCB layout (e.g., routing out of BGA)
 - Even more dramatic DZ_0, compared to manufacturing process

- Impedance changes will result in reflections. The lengths of the lines also play a role

- Therefore, signal integrity must consider both effects
 (i) design
 (ii) process
Conclusions

- We’ve demonstrated a SAP PCB layout on the signal layer of a DDR4 SODIMM circuit

- SAP
 - minimizes line widths and their processing variations
 - allows more lines between BGA for many benefits
 - fewer layers, laminations, and microvias
 - …resulting in lower production costs and higher reliability
 - worth pursuing, especially for designs with large BGA pad counts
 - SAP layers may be combined with SE layers in the same board

- Proper routing requires careful considerations of signal integrity
Acknowledgements

The authors would like to thank:

▪ Steve Iketani and Haris Basit/Averatek: line routing

▪ Tara Dunn and John Johnson /Averatek: PCB manufacturing costs

▪ Tomas Chester/Chester Electronic Design: DDR4 SODIMM re-design using SAP

▪ Eric Bogatin and students / CU Boulder: signal integrity
Please Look for This Upcoming Paper

E. Bogatin, C. Suresh, M. Piket-May, Univ. of Colorado,
and H. Basit, P. Dennig, Averatek Corp., “Utilizing Fine Line PCBs with High Density BGAs,”
Signal Integrity Journal [manuscript submitted for publication]. To be available:

https://www.signalintegrityjournal.com
References

[1] https://www.jedec.org/standards-documents/docs/dg-414h, see, for example, “DESIGN REQUIREMENTS FOR OUTLINES OF SOLID STATE AND RELATED PRODUCTS / Ball Grid Array Package and Interstitial Ball Grid Array Package,” publication JEP95.

